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Abstract—Deschamps’s theorem for n-terminal
complementary structures is reviewed. An ex-
tension to Deschamps’s theorem for a class of
3-terminal bounded structures with one axis of
symmetry is presented. It is shown that for
these structures a simple relationship between
the impedances of the odd mode of the original
structure and the admittances of the even mode
of the complementary structure exists, and that
these modes are orthogonal. Using this, a self-
complementary grid amplifier is designed and
the measured results are presented.

I. MOTIVATION

Quasi-optical grid amplifiers using differential pair
transistors have been used to combine the output power
of many solid-state devices in free space, eliminating
the losses associated with waveguide or transmission-
line combiners [1,2]. To the first order, the unit cell of
a grid determines the driving-point impedance seen by
each device, while power scales with the grid area, This
allows the reduction of the problem of the entire grid to
that of a single unit cell. The symmetry of some grids
allows boundary conditions to be imposed on a unit
cell, thus reducing the problem of solving for the cell to
that of solving for a waveguide representing the cell [3].
Previous grid-array amplifiers have used crossed-dipole
antennas for input and output. The current distribu-
tions on these dipole antennas do not permit a simple
solution for fields in the equivalent waveguide. Con-
sequently, previous grid amplifiers have been modelled
using an approximate transmission line equivalent cir-
cuit model [2]. The crossed-dipole construct ion hss the
additional drawback that it requires the use of differen-
tial pairs of transistors that must be specially fabricated
for the application.

A unit cell configuration that can be more readily
n~odellecf would be desirable, as would a configuration
that utilims a single transistor per unit cell while nlain-
taining cross-polarizecl input and output. Periodic ar-
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Fig. 1. An n-terminal structure.

rays of self-complementary symmetrical structures ofl
such an alternative configuration.

II. DESCHAMPS’S THEOREM

Using Babinet’s principle, Booker presented a sil
ple relationship between the impedances of two 1-PC
planar complementary structures [4]. In a 1959 pap(
Georges Deschamps presented the impedance prop(
ties of multiterminal complementary planar structur

[5], a generalization to Booker’s equation. Fig. 1 shol
an n-terminal structure. Assume that a source insi
S is connected to some or all of the terminals. T
sphere S is small compared to the wavelength of op(
ation. Assume that F = (E, H) is a field solution f
this structure. In other words, F is a field produc(
about this structure by some configuration of sourc
inside S.

Now consider the complement of the structure
Fig. 1, obtained by replacing the metal parts of the ori
inal structure with free space and the apertures wi
metal. Dcschamps showed that an acceptable soluti(
for this structure is the dual of F. F’ is defined to I
the dual field:

F’ = (E’, H’) = ( – qoH, J#, (

where r~O= 377fl is the characteristic impedance of fr
space.
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Fig. 2. (a) Electric and magnetic fields for an arbitrary
structure. (b) The electromagnetic fields for the comple-
ment of the structure in (a). The fields in (b) are the duals
of the fields in (a).

To show that F’ is a solution to the complement
of the structure first consider the uniqueness theorem.

For linear, isotropic media specification of the bound-
ary conditions is sufficient to specify fields uniquely
within the region. Therefore two problems with the
same boundary conditions will have identical solutions.
Consider the structure of Fig. 2(a) with the assutned
field solution F. Continuity of tangential electric field
at a boundary requires that the surface tangential elec-
tric field be zero just outside the metal surface. There-
fore, the Efields at the plane of the structure approach
the metal normal to its boundary and just above the
structure the F~fields are normal to the plane of the
structure. The discontinuity in tangential magnetic

field requires that the tangential magnetic field be per-
pendicular to the direction of the surface current and
equal to the surface current density. Therefore, the II-
ficlds arc parallel to the plane of the structure above
and below it and at the metal boundary the fields cross
the plane of the structure normal to the surface.

‘1’hc electric and magnetic fields about this pla
structure are shown in Fig. 2(a) for the original str
ture and in Fig. 2(b) for the complementary structl
Note that the boundary conditions for the E-fields
Fig. 2(a) are similar to the H-field boundary conditi
in Fig. 2(b). The same similarity exists between
H-field boundary conditions in Fig. 2(a) and the n
ative of the Efield boundary conditions in Fig. 21
Therefore the boundary conditions for the complem
of the original structure are the duals of the origi

boundary conditions. It is clear that assuming F is
field solution for Fig. 2(a), F’ (dual of F) not only ~
isfies Maxwell’s equations but also satisfies the bou
ary conditions of the complementary structure shc
in Fig. 2(b). Therefore, due to the uniqueness theor
F’ is the field solution for Fig. 2(b). In other WO]
the field solutions for the complement of a struct
is equivalent to the field solution for the dual of t
structure.

Deschamps showed that the voltages and currenti
the complementary structure can be defined using
voltages and currents of the original structure [2]:
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where Ii is the current flowing into terminal i an

4~ – ~+1 is the voltage difference between terminal i

~
and i + 1 of Fig. 1. Similarly 1/ is the current flowi g
into terminal i’ of the complementary structure sho n
in Fig. 1, and Vi’-

!l
tf~+l is the voltage difference betwe n

terminals i’ and i’+ 1 of this structure. By conventi in

n+l is equal to 1.
,

III. AN EXTENSION TO

DESCHAMPS’S THEOREM

IHere we discuss an extension to Deschamps’s th -
orem for a symmetrical, 3-terminal (2 port) rectang -
Iar structure, bounded with electric and magnetic wal s

1such as shown in Fig. 3. Adjacent walls are of opposi e
type. As will be discussed later such a boundary condi-

{tion might arise from a periodic array. The symmet y
we refer to throughout this discussion is with respect \o
an axis parallel to either boundary. In the following di -

Jcussion, an odd-mode excitation is defined as the mo e

1

where equal voltages with opposite polarity appear t
ports 1 and 2 of the structure as shown in Fig. 3(a .
An even-rnode excitation is defined as the mode whe e
eclua] voltages with the same polarity appear at por s
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Fig. 3. (a) The odd excitation of abounded symmetrical
st;cture: ‘(b) Even excitation of thecomplernent of (a).
The ports are marked with black dots.

(a) (b)

Fig. 4. Waveguide representation of Fig. 3. (a) Port 1 is
the series combhation of the portsin Fig. 3(a), shown by
two hollow dots. (b) Port 1 is the parallel combination of
the ports in Fig. 3(b), shown by two ovals. Port 2 in (a)
and (b) is the parallel combination of the two ports of the
waveguide.

1 and 2 of the structure aa shown in Fig. 3(b). We will
prove that the ratio of the impedances of the odd exci-
tation of this structure (Fig. 3(a)) to the corresponding
admittances of the even excitation of its complemen-
tary structure is constant and is equal to q~/4, where
qO is the characteristic impedance of free space.

The results stated above apply to any symmetri-
cal structure with previously described boundaries and
‘its complement. In the case of a self-complementary
structure, there are additional simplification. A self-
complementary structure is one which looks the same
when the metal part is exchanged with the non-metal

part. For a self-complementary structures the ratio of
the impedances of the odd excitation of the structure
to the admittances of the even excitation of the same

structure is constant and is equal to 7~~/4

Consider a source configuration at the terminal
the structure in Fig. 3(a) that results in an odd-m
excitation. At low frequencies where the structure c
supports a single TEM mode, this odd-mode excitat
generates a vertically polarized electric field (Ev ) at
far-field. The complement of this structure is show]
Fig. 3(b). As discussed earlier, boundary conditi
for the complement of a planar structure are the dl
of the boundary conditions for the original structl
To use Deschamps’s theorem for a bounded struct~
the E and H-walls of the original structure must
.1 .,...,.* ,1 , ,., ,,

cnangea co r,nelr auals wnen complemenulng me su
ture.-Since the dual of an H-wall-is an Ew~ll and 1
versa, this is equivalent to interchanging E and H-WZ
The field F’ = (E’, H’) in Fig. 3(b) haa to be the d

of the field F = (E, H) in Fig. 3(a), therefore the;
field electric field for the new structure is horizont~
polarized (EH ) and the excitation generating it is
even-mode excitation as shown in Fig. 3(b).

Bounding a planar structure with electric and m
netic walls is equivalent to analyzing this structure
side a waveguide with the same E and H-walls
Figs. 4(a) and 4(b) show the waveguide representat
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of ~he str’uctures’in Figs. 3(a) and 3(b). We define po}t
1 of Fig. 4(a) as the series combination of ports 1 and, 2.,

*
in Fig. 3(a), and port 1 in Fig. 4(b) aa the parallel co -
bination of these ports in Fig. 3(b). Two hollow do s

1

in Fig. 4(a) and two ovals in Fig. 4(b) show port 1.
For the remainder of this discussion we will refer o
port 1 of Figs. 4(a) and 4(b) as the odd and even-mo e
device ports. The waveguides in Figs. 4(a) and 4( )
extend to both sides of the structures. However, d e
to reciprocity and to simplify the analysis of this -
port structure these parallel ports are combined in o
one port. The new port (port 2 in Figs. 4(a) and 4(b )
has half the characteristic impedance of free space. e

1
will refer to the parallel combination of these two por s
as the waveguide port. The purpose is to find equatio s

{
relating the equivalent circuits of the 2-port wavegui e
structures shown in Figs. 4(a) and 4(b).

LConsider the odd-mode excitation of this symme -

1

rical structure inside the waveguide, (Fig. 4(a)). Th s
odd-mode excitation at the device port generates a ve -
tically polarized electric field (Ev ) at the wavegui e
port. Assume that this two-port structure can be re~
resented by a T-equivalent circuit. The componen~s
of this T-circuit are ZOi (i = 1,2, 3). The 11-paramet~r
matrix elements relating the odd-mode excitation oft e

~

device port to the vertically polarized field at the wav -

guicle port are ZOjA (j = 1,2; k = 1, 2). The T-circu t
components and the Z-parameters matrix elements a ,e
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Fig. 5 (a) The T-equivalent circuit for the odd-mode exci-
tation of the structure in Fig. 4(a). (b) The II-equivalent
circuit for the even-mode excitation of the structure in
Fig. 4(b). Due to reciprocity Z012 = Z021 and y~12= y~21.

related as shown in Fig. 5(a). This T-equivalent circuit
relates the odd-mode voltage and current (V. and l.)
at the device port to the waveguide port voltage and
current (Vv and Iv). These voltages and currents are
shown in Fig. 4(a).

Now consider the even-mode excitation of the com-
plement of the structure in Fig. 4(a) which gener-
ates fields with horizontally polarized Efield (EH) at
the waveguide port, Fig. 4(b). A II-equivalent circuit
as shown in Fig. 5(b) is used to represent the new
structure. The components of this fI-circuit are Y,i
(a’ = 1,2, 3). The Y-parameter matrix elements relat-
ing the even-mode excitation of the device port to the
horizontally polarized field at the waveguide port are
Yejk (~ = 1,2; k = 1, 2). The II-circuit components
and the Y-parameters matrix elements are related as

shown in Fig. 5(b), This II-circuit relates the device
port even-mode voltage and current (Ve and 1,) to the
voltage and current at the waveguide port (VH and IH )
shown in Fig, 4(b).

Using (2) and (3) for the structures in Figs, 3(a) and
3(b) we have:

Io=–~ve (4)
Vo

v.=+, (5)

where 10 and V. are the odd-mode current and voltage
as shown in Fig. 3(a) and le and Ve are the even-mode
current and voltage as shown in Fig. 3(b).

[Jsing (4) and (5):

(6)

Using Fig. 5 the ratio of the device port impeda
for the odd excitation (Fig. 5(a)) to the device p
admittance for the even excitation (Fig. 5(b)) when
waveguide ports are terminated to qO/2 is:

v. /10 2.11 – ‘~lz
VO12 + 2022

I./ve =
Yell –

Y~2 ‘

2/rJlo + Ye22

where 2011, 2012, and 2022 are the Z-parameters
the structure with odd-mode excitation and Yel 1, Ye
and Ye22 are the Y-parameters of the cornplementi
structure with even-mode excitation. Terminating i
waveguide port to qO/2 is equivalent to terminating [
two ports of the waveguide in Fig. 4(a) or Fig. 4(b)
the characteristic impedance of free space.

Now consider shorting the device port in Fig. 4(
In order for Fig. 4(b) to remain the complement
Fig. 4(a) the device port in Fig. 4(b) haa to be an op(
Fields at the waveguide port of Fig. 4(a) are related
the waveguide port fields of Fig. 4(b) by (l). We c
derive:

where Vv and VH are the line integrals of Ev and 1
between the Ewalls and IV and lH are twice the Ii
integral of the HV and HH between the H-walls.

The same approach can be used when the dev,
port in Fig. 4(b) is shorted. In this case the dev
port in the complementary structure (Fig. 4(a)) haa
be an open circuit. Similarly we can derive:

From the circuits in Fig. 5 we can also derive:

& I]ff V==O= Z022
&
Vv l.=O

Y.22
(1

P& Iiv V.=o = 2.22 – z:12/zol 1
& J;22 – }:21~/Yell “

(1
v’, [e=0

From (9) and 10):
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Solving for (6),

X.22
Y=22
— = rj~/4. (12)

7), (8), (1 1), and 12) we can derive:

(13)

(14)

To summarize, equations (12) to (14) simply indi-
cate that for the ports shown in Fig. 5 the” Z-parameters
for the odd-mode excitation are related to the Y-
parameters of the complementary structure with even-
mode excitation by:

z..O%J
Ej- = 7:/4 i=l,2; j=l,2, (15)

Using (15) and Fig. 5 the impedances of the T-
equivalent circuit components (ZO1, Z02, Z03) for the
odd-mode excitation and the admittances of the l_l-
circuit components (YO1, Y02, Y03) for the even-mode
excitation of the complementary structure are also re-
lated by:

Z*i

~“ rl?/4 i=l,...,3.

IV. IMPLICATIONS FOR SELF-

COMPLEMENTARY STRUCTURES

(16)

This section discusses planar, bounded structures
that, in addition to satisfying the boundary and sym-
metry conditions previously described, also are self-
complementary. For these self-complementary struc-
tures, such as illustrated in Fig. 3, exchanging the metal
and open parts of the structure yields an identical (mir-
ror image) structure. Because the structure is identi-
cal to its own complement, the results embodied by
(15) and (16) have some special implications for these
bounded, symmetrical, self-complementary structures.

For a symmetrical, self-complement ary structure,
the odd-mode Z-parameters are relatecl to the even-
mode Y-parameters of the same structure by (15). Sire-
ilarly, the T-circuit impedances of the odd-mode are re-
lated to the II-circuit admittances of the even-mode of
the same structure by ( 16). This is useful in modeling,
because it means that if one can successfully charac-
terize either the odd-mocle or even-mode behavior of a

symrnctrical, self-complementary structure, the char{
teristics of the other mode can immediately be deriv<
‘I’his property can also be used to verify the consisten
of even-mode and odd-mode simulations.

Deschamps showed that for two-port symmetri~
self-complementary unbounded structures, the com~
nents of an impedance matrix representing the rel
tionship between the currents and voltages at the tl
ports exhibit certain properties [5]. The derivation
these properties depends solely on the duality trar
formation of the field for the complemented structul
which results in (2) and (3). These equations are iden
cal for unbounded and bounded structures. Therefol
Deschamps’s results apply to the bounded symmetric
self-complementary structures discussed here. Speci
tally, for the Z-matrix defined by:

(:)=(22)(2) ‘1
where Vi (i = 1, 2) and ]i (i z 1, 2) are the port Voltag
and currents defined as in Fig. 6. Deschamps show~
that:

{

211= 222
2:1– Z:2= rlo/4.

(1

Z is the impedance matrix of an ideal attenu
tor having a characteristic impedance of rlo/2 ohm
This implies that for the bounded symmetrical se]
complementary two-port structures discussed here, te
minating one of the antenna ports in qO/2 ohms w
result in an impedance of r10/2 ohms appearing i

the other port. If an active device that is internal
matched to r10/2 ohms at both its input and output
connected to the two ports, both its input and outpl
will be matched to the antenna. This will be true ind
pendent of the details of the antenna structure beyon
the symmetry and self-complementarily restrictions.

Fig. 6. Self-complementary two-port structure,
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V. SI;L,I~-COMIJLI]ME N’I’AILY
GRID AM PLII’IfHtS

‘1’his section discusses the rnodclling and dcwgn of
grid amplifiers with self-complementary, horizontally

symmetrical unit cells. Consider the self-complementary
grid amplifier configuration shown in Pig. 7. Since the
dual of a dielectric is a magnetic material which does
not exist in nature, to make the active grid a self-
complementary structure we assume that the grid is
suspended in free space. In practice this is achieved by
constructing the grid on a very thin substrate with a
low dielectric constant. The input and output polariz-
ers are metallic gratings built on dielectric substrates.
The input polarizer metal strips are O degrees from the
vertical. To keep the input and output signals orthog-
onal, the output polarizer strips are positioned at an
angle of (0 - 90) degrees from the vertical. Unlike the
previous grid amplifiers [1,2], this design allows the use
of single transistors in each unit cell. The input signal
that is incident from the left enters the tilted input PG
larizer normal to its strips (Fig. 7) and generates RF
currents on the input gate leads of the grid (Fig. 7).
Fig. 8 shows the unit cell and the entire 4 x 4 grid am-
plifier. Currents on the output drain leads generate an

output signal that passes through the output polarizer.
Similar to the conventional grid amplifiers, the polariz-
ers provide tuning of the amplifier’s input and output
circuits.

The solution for a self-complementary grid amplifier
can be divided into solving for the odd and even-mode
excitations. For each excitation the current distribu-
tion on the grid allows us to define boundary condi-
tions as shown in Figs. 3(a) and 3(b), CAD analysis
of the unit cell is simpler for the odd-mode excitation.
To simulate equivalent waveguide structures shown in

Input Active output
Polarizer Grid Polarizer

‘(MO)’
Input Beam

Figs. 4(a) and 4(t}) it is necessary to excit.c the inte
port 1 shown ii] thcw figures. Because of the symm~
of the unit cell this port can be excited by simula
half of the unit cell and connecting a small piece ~
coaxial transmission line to this port. Fig. 9 shows
approach for the odd-mode excitation of the unit 1
This technique is not applicable to the even excital
of the cell, because for the even mode the wavegl
wall at the device port is a magnetic wall and ther
no convenient way of inserting a coaxial transmis
line at this wall. The 3-port waveguide structure sh(
in Fig. 9 is used for modelling. Ports 2 and 3 are
front and the back of the grid, and port 1 is the in
nal port on the grid unit cell where the transistor
be attached. The electric and magnetic walls of
waveguide are shown in the figure. The outer wall

+---7-- mrrr—-----+

-r Front .

T-----4”’’*’””

402nlnl

I
~cko.12snun-#

(a)

Transistor

Output Beam
+0”

r
E

(b)

Fig. 8. (a) Front and back side of the grid amplifier 1
cell. (b) Front view of a 4 x 4 grid amplifier. The drains
biawxl from the back side. The drain diamonds are bet
the source diamonds.

Fig. 7. Perspective view of a self-complcrnentary grid anl-
plifier.
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the coaxial tranwnission line are all electric walls. The
coaxial transmission line is de-embedded from the final

S-paratneters.

The approach presented here is to analyze the odd-
mode excitation of this horizontally symmetrical self-
complementary unit cell using Hewlett-Packard’s High
Frequency Structure Simulator (HFSS) [6]. Due to reci-
procity the 3 x 3 scattering matrix resulting from the
HFSS simulation can be reduced to a 2 x 2 matrix. The
port impedance of the combined ports (ports 2 and 3)
is half the impedance of these ports alone. The Z-
parameters of this structure can be calculated from the
S-parameters derived from the HFSS simulation. These
Z-parameters are used to calculate the impedances of
the components in the T-equivalent circuit as shown in
Fig. 5(a). Note that the full-cell T-circuit haa imped-
ances twice that of the half-cell equivalent circuit. The
admittances of the full-cell II-equivalent circuit shown
in Fig. 5(b) are derived using (16) and the impedances
of the T-circuit. By combining the odd and even-mode
equivalent circuits the model for the entire cell can be
derived.

The grid shown in Fig. 7 is built on a 10-mil-thick

Rogers Duroid substrate with a relative dielectric con-
stant of 2.2. The unit cell shown in Fig. 8(a) is 8 mm
on a side. The input beam is coupled to the gate of the
transistor through the gate lead and the output is ra-
diated from the drain lead, orthogonal to the input. In
order to provide bias to the transistors a double-sided

design is used. The source leads in each column are con-
nected to each other and biased from the front of the
grid. A wire bond connects each drain lead to a via-

‘-n

>/1
E-Wall

Fig. 9. Layout of the IIFSS half cell used in simulating
the odd-mode excitation of the grid unit cell. ‘The coaxial
stub used to get access to the internal port of the grid is
de-embedded from the final S-paranleter file.

j8

j4

1.6nun 15mm

377r2

Fig. 10. The equivalent circuit model of the grid in Frg
at 10 GHz.

hole that is connected to the back side of the grid. ‘I
drain bias leads in one column are connected to ea
other and biased at the back side of the grid. Ea
gate is shorted to the source through a bond wire. ‘I
inductance of the gate and drain bond wires are i
portant in the design of the grid and will be discuss
later. To DC isolate the gate of one cell from the dr{
of the cell below, a O.15-mm-slot is used to separate t
two. Three 20-pF chip capacitors shown in Fig. 8(a) z
used to make an RF connection between the gate a
drains of neighboring cells. The transistors are Fujit
FLK012XP MESFET’S. Fig. 8(b) shows how the UI
cells are connected to construct a 4 x 4 grid and dc
not include the details of each cell. Each arrow in t]
figure points to the location of the transistor in a u]
cell. The transistors are glued on the source lead a!
connections to the gate, drain and the source are ma
with wire bonds.

Fig. 10 shows the transmission-line equivalent circ~
for the amplifier configuration of Fig. 7 and unit cell
Fig. 8(a). The dimensions for a,b,c and d correspol
to those actually used for the prototype amplifier. Fr
space for this square unit cell is represented by a res
tor with a characteristic impedance of qO = 3770. T
dielectric substrates and the air gaps between them a
model]ed as transmission lines [2]. Polarizers are mo
elled as inductors or capacitors depending on the p
larization. To model the transistor, the S-parametc
of the FET are normalized to 377 Q. A rotation tram
formation matrix is defined to separate the incomi)
signal to its vertical and horizontal components, al
also to combine the vertical and horizontal componen
of the outgoing signal to form the output. The fo
ports of this rotation matrix are the vertical and hc
izontal polarizations for ports 1 and 2, and the inp



and olltpllt signals to the grici amplifier for ports 3 and
4. ‘[he S-matrix is defined by:

[

Cos e sin 0

)

S=?ooo,—sm 6 cos 6’
(19)

cose sin O 0 0

where 0 is the output signal angle from the vertical as

shown is Fig. 7.

The vertical component of the input signal is con-
nected to the odd-mode T-equivalent circuit of the unit
cell, and the horizontal component of the input excites
the even-mode II-equivalent circuit. The even and odd
modes are then combined using a mode-converter (S’
and two transformers shown in Fig. 10).

Defining ports 1 and 2 as shown in Figs. 3(a) and
3(b), port 3 as the odd mode, and port 4 as the even
mode, a four port mode-converter is defined. Fig. 3(a)
shows that an odd excitation with a voltage of V. at
port 3 of this device should generate voltages equal to

Vo/2 and –VO/2 at ports 1 and 2. As shown in Fig. 3(b)
an even excitation with a voltage of Ve at port 4 should
generate voltages equal to Ve at ports 1 and 2. To
achieve these equal volt ages at both ports, a lossless
4-port device has to have a l/fi transmission from
ports 3 and 4 to 1 and 2 and vice versa. Choosing the
proper phase for these transmission coefficients insures
that signals at proper ports have the desired polarity.
A 4-port S-matrix is defined by:

(
o 0 l/ti l/fi

s’= 0 0

)

–l/w I/@ . ~20)
l/@ –l/w o 0
1//2 1//2 o 0

According to S’ an even excitation with a voltage
of Ve at port 4 results in voltages equal to V./#2 at
ports 1 and 2. However, according to Fig, 3(b) voltages

at ports 1 and 2 have to be equal to Ve. To make a
correction a transformer at port 4 of S’ increases the
voltage level of the incoming signal by a factor of @

before it enters S’. A similar correction is needed for
the odd mode. Instead of generating voltages equal to
VO/2 and - VO/2 at ports 1 and 2 for an odd excitation
of VO at port 3, S’ generates voltages of Vo/fi and
- t~/~ at these ports. Therefore a transformer at
port 3 of S’ decreases the voltage of the signal by a
factor of ~ before it enters port 3.

AThe dashed rectangle in Fig. 10 is the passive met I
structure of the ampli~er unit ~ell discounting the boncl

)wires shown in Fig. 8(a). The input signal enters po t

I

3’ and the output exits from 4’. Port 2’ is connecte
to the gate of the transistor and the drain is attache
to 1’. For the amplifier to work properly, the tran -
mission coefficients from the input to the gate (S2/31 )

{
and the drain to the output (S4/11) have to be larg ,
and the transmission coefficients from the input to the
drain (S1,3, ) and gate to the output (S4,2,) have to b~
small. Resistive loads of qO/2 at the device ports, 1’
and 21 are found to be the optimum loads for acco -

j

plishing this as shown in section IV. Therefore, bon
wires at the gate and the drain of the FET are used t
resonate with the input and output capacitance of th
FET and present a resistive load at ports 1’ and 2’0
the unit cell. The measured inductance of a bond wir
with a diameter of 0.7 mil is 1 nH/mm, The require
inductance of 1.3 nH and 0.6 nH is achieved by addin
1.3-mm and 0.6-mm bond wires at the drain and gat
of the unit cell respectively, Different angles for th
incoming signal were also considered. An input bea
with an angle of 45° from the vertical is the optimum.
The theoretical predicted gain is 14 dB at 8 GHz. ~

VI. GAIN MEASUREMENT

JThe small signal gain of the grid was measured b
placing the grid in the far field of two cross-polarize

c1
horns [1,2]. The measured gain is shown in Fig. 11
This gain is measured for a drain voltage of 1.85 V an d
a total drain current of 850 mA. The output polarizer i

1this measurement is 1–2 mm away from the grid. Th~
input polarizer is at a distance of 2.8 cm from the grid,
Tuning slabs with a relative dielectric constant of 2.1
are also used at the input and output. The input tun
ing slab is 1 cm away from the input polarizer and th~
output tuning slab is 1.8cm away from the output pe~
larizer. The measured peak gain is 10 dB at 8 GHz.~
The gain of the amplifier when it is not biased is als~
shown in Fig. 11. At peak gain the difference between,
the biased and unbiased gain is over 20 dB. To insure’
that the grid is stable at this bias, the output power was!
measured versus the input power. A linear dependence!
between the input and the output power indi~ates that;
the grid is stable. ,\

The 3-dB bandwidth of this amplifier is 210 MHz.!
This measured bandwidth is considerably narrower!
than the predicted theoretical bandwidth. This dis-1
crepancy might be in part due to the use of a simpler’

structure in flF’SS modelling of the unit cell, For sim-~
plicity a unit cell similar to Fig. 7 was used instead
of the unit cell in Fig. 8(a). Another possible cause’
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Fig. 11. Measured gain of the amplifier versus frequency.

of the narrow bandwidth is the position of the out-
put polarizer. Tuning for maximum gain as shown in
Fig. 11 requires that the output polarizer be placed
very close to the grid amplifier. This does not satisfy
the assumptions inherent in the simple transmission-
line model shown in Fig. 10, which only considers the
propagating TEM mode [7].

The grid suffered from intermittent oscillations at
higher drain voltages. The onset of these oscillations

were at a drain bias voltage above 1.85 V and a bias
current above 850 mA. The oscillation frequency and
power were a function of both bias voltage and time.
These oscillations covered a range of frequencies around

8.5 GHz.

VII. CONCLUSIONS

An extension to Deschamps’s theorem for 3-terminal
horizontally symmetrical, complementary, bounded struc-
t ures are presented. This theorem is used to design a
self-complementary grid amplifier. The amplifier has a
gain of 10 dB at 8 GHz. The stability of the amplifier
is a problem and more work will be needed to fix it.
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